- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bailey, Michael (3)
-
Kumar, Deepak (3)
-
Murley, Paul (3)
-
Bates, Adam (2)
-
Hennenfent, Eric (2)
-
Mason, Joshua (2)
-
Paccagnella, Riccardo (2)
-
Chhabra, Rishabh (1)
-
Wang, Gang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kumar, Deepak; Paccagnella, Riccardo; Murley, Paul; Hennenfent, Eric; Mason, Joshua; Bates, Adam; Bailey, Michael (, IEEE Security & Privacy)
-
Kumar, Deepak; Paccagnella, Riccardo; Murley, Paul; Hennenfent, Eric; Mason, Joshua; Bates, Adam; Bailey, Michael (, 27th USENIX Security Symposium)The proliferation of the Internet of Things has increased reliance on voice-controlled devices to perform everyday tasks. Although these devices rely on accurate speech recognition for correct functionality, many users experience frequent misinterpretations in normal use. In this work, we conduct an empirical analysis of interpretation errors made by Amazon Alexa, the speech-recognition engine that powers the Amazon Echo family of devices. We leverage a dataset of 11,460 speech samples containing English words spoken by American speakers and identify where Alexa misinterprets the audio inputs, how often, and why. We find that certain misinterpretations appear consistently in repeated trials and are systematic. Next, we present and validate a new attack, called skill squatting. In skill squatting, an attacker leverages systematic errors to route a user to malicious application without their knowledge. In a variant of the attack we call spear skill squatting, we further demonstrate that this attack can be targeted at specific demographic groups. We conclude with a discussion of the security implications of speech interpretation errors, countermeasures, and future work.more » « less
An official website of the United States government

Full Text Available